Publications of Assays and Reagents

Select from the categories below to view lists of peer-reviewed publications of screens featuring Vala technology.

Kinetic Image Cytometry® (KIC®) screens of action potentials, calcium, and contraction (2008-present).


Cardio:

  1. Dries A.M. Feyen , Isaac Perea-Gil , Renee G.C. Maas , Magdalena Harakalova , Alexandra A. Gavidia , Jennifer Arthur Ataam , Ting-Hsuan Wu , Aryan Vink , Jiayi Pei , Nirmal Vadgama , Albert J. Suurmeijer , Wouter P. te Rijdt , Michelle Vu , Prashila L. Amatya , Maricela Prado , Yuan Zhang , Logan Dunkenberger , Joost P.G. Sluijter , Karim Sallam , Folkert W. Asselbergs , Mark Mercola , and Ioannis Karakikes. The Unfolded Protein Response as a Compensatory Mechanism and Potential Therapeutic Target in PLN R14del Cardiomyopathy. Circulation (2021). Pubmed

  2. Jung J., Ikeda G., Tada Y. von Bornstädt D., Santoso M.R., Wahlquist C., Rhee S., Jeon Y., Yu A.C., O’brien C.G., Red-Horse K., Appel E. A., Mercola M., Woo J., Yang P.C. miR-106a-363 cluster in extracellular vesicles promotes endogenous myocardial repair via Notch3 pathway in ischemic heart injury. Basic Research in Cardiology (2021). Pubmed

  3. Hnatiuk A.P., Brignati F., Staudt D.W., Mercola M. Human iPSC modeling of heart disease for drug development. Cell Chemical Biology (2021). Pubmed

  4. Heitmann S., Shpak A., Vandenberg J.I., Hill A.P. Arrhythmogenic effects of ultra-long and bistable cardiac action potentials. PLOS Computational Biology (2021). Full text

  5. Gomez-Galeno J., Okolotowicz K., Johnson M., McKeithan W.L., Mercola M., Cashman J.R. Human-induced pluripotent stem cell-derived cardiomyocytes: Cardiovascular properties and metabolism and pharmacokinetics of deuterated mexiletine analogs. Pharmacology Research & Perspectives (2021). Pubmed

  6. Cashman J.R., Ryan D., McKeithan W.L., Okolotowicz K., Gomez-Galeno J., Johnson M., Sampson K.J., Kass R.S., Pezhouman A., Karaguezian H.S., Mercola M. Antiarrhythmic Hit to Lead Refinement in a Dish Using Patient-Derived iPSC Cardiomyocytes. Journal of Medicinal Chemistry (2021).

  7. McKeithan W.L., Feyen D.A.M., Bruyneel A.A.N., Okolotowicz K.J., Ryan D.A., Sampson K.J., Potet F., Savchenko A., Gómez-Galeno J., Vu M., Serrano R., George Jr A.L., Kass R.S., Cashman J.R., Mercola M. Reengineering an Antiarrhythmic Drug Using Patient hiPSC Cardiomyocytes to Improve Therapeutic Potential and Reduce Toxicity. Cell Stem Cell (2020). Pubmed

  8. Briganti F., Sun H., Wei W., Wu J. Zhu C., Liss M., Karakikes I., Rego S., Cipriano A., Snyder M., Meder B., Xu Z., Millat G., Gotthardt M., Mercola M., Steinmetz L.M. iPSC Modeling of RBM20-deficient DCM identifies upregulation of RBM20 as a therapeutic strategy. Cell Reports (2020). Full text

  9. Feyen D.A.M., McKeithan W.L., Bruyneel A.A.N., Spiering S., Hörmann L., Ulmer B., Zhang H., Briganti F., Schweizer M., Hegyi B., Liao Z., Pölönen R.P., Ginsburg K.S., Lam C.K., Serrano, R., Wahlquist C., Kreymerman A., Vu M., Amatya P.L., Behrens C.S., Ranjbarvaziri S., Maas R.G.C. Greenhaw M., Bernstein D., Wu J.C., Bers D.M., Eschenhagen T., Metallo C.M., Mercola M. Metabolic maturation media improve physiological function of human iPSC-derived cardiomyocytes. Cell Reports (2020). Full text


  10. Perry, M.D., Ng, C.A., Mangala, M.M., Ng, T.Y.M., Hines, A.D., Liang, W., Xu, M.J.O., Hill, A.P., Vandenberg, J.I. Pharmacological activation of IKr in models of long QT Type 2 risks overcorrection of repolarization. Cardiovascular Research (2020). Pubmed

  11. Garbern J.C., Helman A., Sereda, R., Sarikhani M., Ahmed A., Escalante G.O., Ogurlu R., Kim S.L., Zimmerman J.F., Cho A., MacQueen L., Bezzerides V.J., Parker K., Melton D.A., Lee R.T. Inhibition of mTOR signaling enhances maturation of cardiomyocytes derived from human-induced pluripotent stem cells via p53-induced quiescence. Circulation (2020). Pubmed

  12. Pfeiffer-Kaushik E.R., Smith G.L., Cai B., Dempsey G.T., Hortigon-Vinagre M.P., Zamora V., Feng S., Ingermanson R., Zhu R., Hariharan V., Nguyen C., Pierson J., Gintant G.A., Tung L. Electrophysiological characterization of drug response in hSC-derived cardiomyocytes using voltage-sensitive optical platforms. Journal of Pharamacological and Toxicological Methods (2019). Pubmed

  13. Bruyneel A.A.N., Muser T., Parthasarathy V., Feyen D., Mercola M. Phenotypic screening of iPSC-derived cardiomyocytes for cardiotoxicity testing and therapeutic target discovery. Cardiovascular Regenerative Medicine (2019). Full text

  14. Ruiz-Lozano, et al. Engineered collagen matrices for myocardial therapy. United States Patent US 10,149,922. Issued December 11, 2018.

  15. Sharma A., McKeithan W.L., Serrano R., Kitani T., Burridge P.W., Del Álamo J.C., Mercola M., Wu J.C. Use of human induced pluripotent stem cell-derived cardiomyocytes to assess drug cardiotoxicity. Nature Protocols 13(12):3018-3041 (2018). Pubmed

  16. McKeithan, W.L., Savchenko, A., Yu, M.S., Cerignoli, F., Bruyneel, A.A.N., Price, J.H., Colas, A.R., Miller, E.W., Cashman, J.R. & Mercola, M. An Automated Platform for Assessment of Congenital and Drug-Induced Arrhythmia with hiPSC-Derived Cardiomyocytes. Front Physiol 8, 766 (2017).Pubmed

  17. Crespo, R., Wei, K., Rodenak-Kladniew, B., Mercola, M., Ruiz-Lozano, P., Hurtado, C. Effect of geraniol on rat cardiomyocytes and its potential use as a cardioprotective natural compound. Life Sciences 172:8-12 (2017). Pubmed

  18. Sharma A., Burridge P.W., McKeithan W.L. Serrano R., Shukla P., Sayed N., Churko J.M., Kitani T., Wu H., Holmström A., Matsa E., Zhang Y., Kumar A., Fan A.C., Del Álamo J.C., Wu S.M., Moslehi J.J., Mercola M., Wu J.C. High-throughput screening of tyrosine kinase inhibitor cardiotoxicity with human induced pluripotent stem cells. Sci Transl Med 15;9(377) (2017). Pubmed

  19. Pfeiffer, E.R., Whittaker, R., Vega, R., Cerignoli, F., McDonough, P.M. & Price, J.H. Kinetic Image Cytometry for Predicting Arrhythmias Using Human Stem Cell-Derived Cardiomyocytes. in Stem Cell-Derived Models in Toxicology (eds. Clements, M. & Roquemore, L.) 153-171 (Springer New York, New York, NY, 2017). Springer

  20. Chung, Raeeun. Identification of microRNAs targeting PROX1 and their role in mediating Dilated Cardiomyopathy. UC San Diego Bioengineering Master’s Thesis.

  21. Del Alamo, J.C., Lemons, D., Serrano, R., Savchenko, A., Cerignoli, F., Bodmer, R. & Mercola, M. High throughput physiological screening of iPSC-derived cardiomyocytes for drug development. Biochimica et Biophysica Acta (2016). Pubmed

  22. Pfeiffer, E.R., Vega, R., McDonough, P.M., Price, J.H. & Whittaker, R. Specific prediction of clinical QT prolongation by kinetic image cytometry in human stem cell derived cardiomyocytes. J Pharmacol Toxicol Methods 81, 263-273 (2016). Pubmed

  23. Wei, K., Serpooshan, V., Hurtado, C., Diez-Cunado, M., Zhao, M., Maruyama, S., Zhu, W., Fajardo, G., Noseda, M., Nakamura, K., Tian, X., Liu, Q., Wang, A., Matsuura, Y., Bushway, P., Cai, W., Savchenko, A., Mahmoudi, M., Schneider, M.D., van den Hoff, M.J., Butte, M.J., Yang, P.C., Walsh, K., Zhou, B., Bernstein, D., Mercola, M. & Ruiz-Lozano, P. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479-485 (2015). Pubmed

  24. Lu, H.R., Whittaker, R., Price, J.H., Vega, R., Pfeiffer, E.R., Cerignoli, F., Towart, R. & Gallacher, D.J. High Throughput Measurement of Ca++ Dynamics in Human Stem Cell-Derived Cardiomyocytes by Kinetic Image Cytometery: A Cardiac Risk Assessment Characterization Using a Large Panel of Cardioactive and Inactive Compounds. Toxicol Sci 148, 503-516 (2015). Pubmed

  25. Wahlquist, C., Jeong, D., Rojas-Munoz, A., Kho, C., Lee, A., Mitsuyama, S., van Mil, A., Park, W.J., Sluijter, J.P., Doevendans, P.A., Hajjar, R.J. & Mercola, M. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508, 531-535 (2014). Pubmed

  26. Cerignoli, F., Charlot, D., Whittaker, R., Ingermanson, R., Gehalot, P., Savchenko, A., Gallacher, D.J., Towart, R., Price, J.H., McDonough, P.M. & Mercola, M. High throughput measurement of Ca2+ dynamics for drug risk assessment in human stem cell-derived cardiomyocytes by kinetic image cytometry. J Pharmacol Toxicol Methods 66, 246-256 (2012). Pubmed

  27. Islas, J.F., Liu, Y., Weng, K.C., Robertson, M.J., Zhang, S., Prejusa, A., Harger, J., Tikhomirova, D., Chopra, M., Iyer, D., Mercola, M., Oshima, R.G., Willerson, J.T., Potaman, V.N. & Schwartz, R.J. Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proceedings of the National Academy of Sciences of the United States of America 109, 13016-13021 (2012). Pubmed

  28. Charlot, D., Campa, V., Azimi, B., Mercola, M., Ingermanson, R., McDonough, P.M. & Price, J.H. Automated calcium measurements in live cardiomyocytes. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, 316-319 (2008). IEEE Explore

Neuro:

  1. Alyson S. Smith, Soneela Ankam, Chen Farhy, Lorenzo Fiengo, Ranor C.B. Basa, Kara L. Gordon, Charles T. Martin, Alexey V. Terskikh, Kelly L. Jordan-Sciutto, Jeffrey H. Price, Patrick M. McDonough. High-content analysis and Kinetic Image Cytometry identify toxicity and epigenetic effects of HIV antiretrovirals on human iPSC-neurons and primary neural precursor cells. Journal of Pharmacological Toxicological Methods 114:107157 (2022). Pubmed

  2. McDonough P.M., Prigozhina N.L., Basa R.C.B., Price J.H. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment. Assay Drug Dev Technol 15(5):220-236 (2017). Pubmed

  3. Tobe B.T.D., et al., Probing the lithium-response pathway in hiPSCs implicates the phosphoregulatory set-point for a cytoskeletal modulator in bipolar pathogenesis. Proc Natl Acad Sci U S A. 114(22):E4462-E4471 (2017). Pubmed

High content screening with Vala’s IC100, IC200, and CyteSeer® analysis (2000-present).


Signaling, gene expression, and epigenetics:

  1. Tambe, M.A., Ng, B.G. & Freeze, H.H. N-Glycanase 1 transcriptionally regulates aquaporins independent of its enzymatic activity. Cell Reports (2019). Pubmed

  2. Farhy, C., Hariharan, S., Ylanko, J., Orozco, L., Zeng, F.Y., Pass, I., Ugarte, F., Forsberg, E.C., Huang, C.T., Andrews, D.W. & Terskikh, A.V. Improving drug discovery using image-based multiparametric analysis of the epigenetic landscape. Elife (2019). Pubmed

  3. Markmiller, S., Fulzele, A., Higgins, R., Leonard, M., Yeo, G.W. & Bennett, E.J. Active protein neddylation or ubiquitylation is dispensable for stress granule dynamics. Cell Reports (2019). Pubmed

  4. He, P., Grotzke, J.E., Ng, B.G., Gunel, M., Jafar-Nejad, H., Cresswell, P., Enns, G.M. & Freeze, H.H. A congenital disorder of deglycosylation: Biochemical characterization of N-glycanase 1 deficiency in patient fibroblasts. Glycobiology (2015). Full text

  5. Chung, C.H., Miller, A., Panopoulos, A., Hao, E., Margolis, R., Terskikh, A. & Levine, F. Maternal embryonic leucine zipper kinase regulates pancreatic ductal, but not beta-cell, regeneration. Physiological reports 2(2014). Pubmed

  6. Large, M.J., Wetendorf, M., Lanz, R.B., Hartig, S.M., Creighton, C.J., Mancini, M.A., Kovanci, E., Lee, K.F., Threadgill, D.W., Lydon, J.P., Jeong, J.W. & DeMayo, F.J. The epidermal growth factor receptor critically regulates endometrial function during early pregnancy. PLoS genetics 10, e1004451 (2014). Pubmed

  7. Stossi, F., Bolt, M.J., Ashcroft, F.J., Lamerdin, J.E., Melnick, J.S., Powell, R.T., Dandekar, R.D., Mancini, M.G., Walker, C.L., Westwick, J.K. & Mancini, M.A. Defining estrogenic mechanisms of bisphenol A analogs through high throughput microscopy-based contextual assays. Chemistry & biology 21, 743-753 (2014). Pubmed

  8. Bolt, M.J., Stossi, F., Newberg, J.Y., Orjalo, A., Johansson, H.E. & Mancini, M.A. Coactivators enable glucocorticoid receptor recruitment to fine-tune estrogen receptor transcriptional responses. Nucleic acids research 41, 4036-4048 (2013). Pubmed

  9. Mediwala, S.N., Sun, H., Szafran, A.T., Hartig, S.M., Sonpavde, G., Hayes, T.G., Thiagarajan, P., Mancini, M.A. & Marcelli, M. The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. The Prostate 73, 267-277 (2013). Pubmed

  10. Colas, A.R., McKeithan, W.L., Cunningham, T.J., Bushway, P.J., Garmire, L.X., Duester, G., Subramaniam, S. & Mercola, M. Whole-genome microRNA screening identifies let-7 and mir-18 as regulators of germ layer formation during early embryogenesis. Genes & development 26, 2567-2579 (2012). Pubmed

  11. Zhang, X., Bolt, M., Guertin, M.J., Chen, W., Zhang, S., Cherrington, B.D., Slade, D.J., Dreyton, C.J., Subramanian, V., Bicker, K.L., Thompson, P.R., Mancini, M.A., Lis, J.T. & Coonrod, S.A. Peptidylarginine deiminase 2-catalyzed histone H3 arginine 26 citrullination facilitates estrogen receptor alpha target gene activation. Proceedings of the National Academy of Sciences of the United States of America 109, 13331-13336 (2012). Full Text

  12. Ding, Z., German, P., Bai, S., Feng, Z., Gao, M., Si, W., Sobieski, M.M., Stephan, C.C., Mills, G.B. & Jonasch, E. Agents that stabilize mutated von Hippel-Lindau (VHL) protein: results of a high-throughput screen to identify compounds that modulate VHL proteostasis. Journal of biomolecular screening 17, 572-580 (2012). Pubmed

  13. Dasgupta, I., Tanifum, E.A., Srivastava, M., Phatak, S.S., Cavasotto, C.N., Analoui, M. & Annapragada, A. Non inflammatory boronate based glucose-responsive insulin delivery systems. PloS one 7, e29585 (2012). Pubmed

  14. Ashcroft, F.J., Newberg, J.Y., Jones, E.D., Mikic, I. & Mancini, M. High content imaging-based assay to classify estrogen receptor-alpha ligands based on defined mechanistic outcomes. Gene (2011). Pubmed

  15. Kiselyuk, A., Farber-Katz, S., Cohen, T., Lee, S.H., Geron, I., Azimi, B., Heynen-Genel, S., Singer, O., Price, J., Mercola, M., Itkin-Ansari, P. & Levine, F. Phenothiazine neuroleptics signal to the human insulin promoter as revealed by a novel high-throughput screen. Journal of biomolecular screening 15, 663-670 (2010). Pubmed

  16. Garcia-Becerra, R., Berno, V., Ordaz-Rosado, D., Sharp, Z.D., Cooney, A.J., Mancini, M.A. & Larrea, F. Ligand-induced large-scale chromatin dynamics as a biosensor for the detection of estrogen receptor subtype selective ligands. Gene 458, 37-44 (2010). Pubmed

  17. Szafran, A.T., Hartig, S., Sun, H., Uray, I.P., Szwarc, M., Shen, Y., Mediwala, S.N., Bell, J., McPhaul, M.J., Mancini, M.A. & Marcelli, M. Androgen receptor mutations associated with androgen insensitivity syndrome: a high content analysis approach leading to personalized medicine. PloS one 4, e8179 (2009). Pubmed

  18. Szafran, A.T., Szwarc, M., Marcelli, M. & Mancini, M.A. Androgen receptor functional analyses by high throughput imaging: determination of ligand, cell cycle, and mutation-specific effects. PloS one 3, e3605 (2008). Pubmed

  19. Berno, V., Amazit, L., Hinojos, C., Zhong, J., Mancini, M. G., Sharp, Z. D., Mancini, M. A. Activation of estrogen receptor-alpha by E2 or EGF induces temporally distinct patterns of large-scale chromatin modification and mRNA transcription. PloS one 3, e2286 (2008). Pubmed

  20. Amazit, L., Pasini, L., Szafran, A.T., Berno, V., Wu, R.C., Mielke, M., Jones, E.D., Mancini, M.G., Hinojos, C.A., O’Malley, B.W. & Mancini, M.A. Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Molecular and cellular biology 27, 6913-6932 (2007). Pubmed

  21. Huang, Y., Qiu, J., Dong, S., Redell, M.S., Poli, V., Mancini, M.A. & Tweardy, D.J. Stat3 isoforms, alpha and beta, demonstrate distinct intracellular dynamics with prolonged nuclear retention of Stat3beta mapping to its unique C-terminal end. The Journal of biological chemistry 282, 34958-34967 (2007). Pubmed

  22. Sharp, Z.D., Mancini, M.G., Hinojos, C.A., Dai, F., Berno, V., Szafran, A.T., Smith, K.P., Lele, T.P., Ingber, D.E. & Mancini, M.A. Estrogen-receptor-alpha exchange and chromatin dynamics are ligand- and domain-dependent. J Cell Sci 119, 4101-4116 (2006). Pubmed

  23. Marcelli, M., Stenoien, D.L., Szafran, A.T., Simeoni, S., Agoulnik, I.U., Weigel, N.L., Moran, T., Mikic, I., Price, J.H. & Mancini, M.A. Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem 98, 770-788 (2006). Pubmed

  24. Cho, C.Y., Koo, S.H., Wang, Y., Callaway, S., Hedrick, S., Mak, P.A., Orth, A.P., Peters, E.C., Saez, E., Montminy, M., Schultz, P.G. & Chanda, S.K. Identification of the tyrosine phosphatase PTP-MEG2 as an antagonist of hepatic insulin signaling. Cell Metab 3, 367-378 (2006). Pubmed

  25. Harada, J.N., Bower, K.E., Orth, A.P., Callaway, S., Nelson, C.G., Laris, C., Hogenesch, J.B., Vogt, P.K. & Chanda, S.K. Identification of novel mammalian growth regulatory factors by genome-scale quantitative image analysis. Genome Res 15, 1136-1144 (2005). Pubmed

Cell cycle and migration:

  1. Slattery, S.D., Newberg, J.Y., Szafran, A.T., Hall, R.M., Brinkley, B.R. & Mancini, M.A. A framework for image-based classification of mitotic cells in asynchronous populations. Assay and drug development technologies 10, 161-178 (2012). Pubmed

  2. Buck, T.E., Rao, A., Coelho, L.P., Fuhrman, M.H., Jarvik, J.W., Berget, P.B. & Murphy, R.F. Cell cycle dependence of protein subcellular location inferred from static, asynchronous images. Conf Proc IEEE Eng Med Biol Soc 2009, 1016-1019 (2009). Pubmed

  3. Slattery, S.D., Mancini, M.A., Brinkley, B.R. & Hall, R.M. Aurora-C kinase supports mitotic progression in the absence of Aurora-B. Cell Cycle 8, 2984-2994 (2009). Pubmed

  4. Mukherji, M., Bell, R., Supekova, L., Wang, Y., Orth, A.P., Batalov, S., Miraglia, L., Huesken, D., Lange, J., Martin, C., Sahasrabudhe, S., Reinhardt, M., Natt, F., Hall, J., Mickanin, C., Labow, M., Chanda, S.K., Cho, C.Y. & Schultz, P.G. Genome-wide functional analysis of human cell-cycle regulators. Proceedings of the National Academy of Sciences of the United States of America 103, 14819-14824 (2006). Pubmed

  5. Prigozhina, N.L. & Waterman-Storer, C.M. Decreased polarity and increased random motility in PtK1 epithelial cells correlate with inhibition of endosomal recycling. J Cell Sci 119, 3571-3582 (2006). Pubmed

  6. Shen, F., Hodgson, L., Rabinovich, A., Pertz, O., Hahn, K. & Price, J.H. Functional proteometrics for cell migration. Cytometry. Part A : the journal of the International Society for Analytical Cytology 69, 563-572 (2006). Pubmed

  7. Wilson, C.J., Si, Y., Thompsons, C.M., Smellie, A., Ashwell, M.A., Liu, J.F., Ye, P., Yohannes, D. & Ng, S.C. Identification of a small molecule that induces mitotic arrest using a simplified high-content screening assay and data analysis method. Journal of biomolecular screening 11, 21-28 (2006). Pubmed

Cancer:

  1. Shaked, Y., Pham, E., Hariharan, S., Magidey, K., Beyar-Katz, O., Xu, P., Man, S., Wu, F.T., Miller, V., Andrews, D. & Kerbel, R.S. Evidence Implicating Immunological Host Effects in the Efficacy of Metronomic Low-Dose Chemotherapy. Cancer Res 76, 5983-5993 (2016). Pubmed

  2. Bharadwaj, U., Eckols, T.K., Kolosov, M., Kasembeli, M.M., Adam, A., Torres, D., Zhang, X., Dobrolecki, L.E., Wei, W., Lewis, M.T., Dave, B., Chang, J.C., Landis, M.D., Creighton, C.J., Mancini, M.A. & Tweardy, D.J. Drug-repositioning screening identified piperlongumine as a direct STAT3 inhibitor with potent activity against breast cancer. Oncogene 0(2014). Pubmed

  3. Bolt, M.J., Stossi, F., Callison, A.M., Mancini, M.G., Dandekar, R. & Mancini, M.A. Systems level-based RNAi screening by high content analysis identifies UBR5 as a regulator of estrogen receptor-alpha protein levels and activity. Oncogene (2014). Pubmed

  4. Castro, D.J., Maurer, J., Hebbard, L. & Oshima, R.G. ROCK1 inhibition promotes the self-renewal of a novel mouse mammary cancer stem cell. Stem cells 31, 12-22 (2013). Pubmed

  5. Uray, I.P., Rodenberg, J.M., Bissonnette, R.P., Brown, P.H. & Mancini, M.A. Cancer-preventive rexinoid modulates neutral lipid contents of mammary epithelial cells through a peroxisome proliferator-activated receptor gamma-dependent mechanism. Molecular pharmacology 81, 228-238 (2012). Pubmed

  6. Quintavalle, M., Elia, L., Price, J.H., Heynen-Genel, S. & Courtneidge, S.A. A cell-based high-content screening assay reveals activators and inhibitors of cancer cell invasion. Science signaling 4, ra49 (2011). Pubmed

  7. Yip, K.W., Cuddy, M., Pinilla, C., Giulanotti, M., Heynen-Genel, S., Matsuzawa, S. & Reed, J.C. A high-content screening (HCS) assay for the identification of chemical inducers of PML oncogenic domains (PODs). Journal of biomolecular screening 16, 251-258 (2011). Pubmed

  8. Sun, S., Sprenger, C.C., Vessella, R.L., Haugk, K., Soriano, K., Mostaghel, E.A., Page, S.T., Coleman, I.M., Nguyen, H.M., Sun, H., Nelson, P.S. & Plymate, S.R. Castration resistance in human prostate cancer is conferred by a frequently occurring androgen receptor splice variant. The Journal of clinical investigation 120, 2715-2730 (2010). Pubmed

  9. Narayanan, R., Yepuru, M., Szafran, A.T., Szwarc, M., Bohl, C.E., Young, N.L., Miller, D.D., Mancini, M.A. & Dalton, J.T. Discovery and mechanistic characterization of a novel selective nuclear androgen receptor exporter for the treatment of prostate cancer. Cancer Res 70, 842-851 (2010). Pubmed

  10. Giordano, C., Cui, Y., Barone, I., Ando, S., Mancini, M.A., Berno, V. & Fuqua, S.A. Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res Treat 119, 71-85 (2009). Pubmed

Cardiovascular biology:

  1. Bhavane, R., Badea, C., Ghaghada, K.B., Clark, D., Vela, D., Moturu, A., Annapragada, A., Johnson, G.A., Willerson, J.T. & Annapragada, A. Dual-energy computed tomography imaging of atherosclerotic plaques in a mouse model using a liposomal-iodine nanoparticle contrast agent. Cardiovascular imaging 6, 285-294 (2013). Pubmed

  2. Prigozhina, N.L., Heisel, A., Wei, K., Noberini, R., Hunter, E.A., Calzolari, D., Seldeen, J.R., Pasquale, E.B., Ruiz-Lozano, P., Mercola, M. & Price, J.H. Characterization of a novel angiogenic model based on stable, fluorescently labelled endothelial cell lines amenable to scale-up for high content screening. Biol Cell 103, 467-481 (2011). Pubmed

  3. Willems, E., Spiering, S., Davidovics, H., Lanier, M., Xia, Z., Dawson, M., Cashman, J. & Mercola, M. Small-molecule inhibitors of the Wnt pathway potently promote cardiomyocytes from human embryonic stem cell-derived mesoderm. Circulation research 109, 360-364 (2011). Pubmed

  4. Willems, E., Bushway, P.J. & Mercola, M. Natural and synthetic regulators of embryonic stem cell cardiogenesis. Pediatr Cardiol 30, 635-642 (2009). Pubmed

Skeletal muscle:

  1.  Zhang, Y., Davis, C., Sakellariou, G.K., Shi, Y., Kayani, A.C., Pulliam, D., Bhattacharya, A., Richardson, A., Jackson, M.J., McArdle, A., Brooks, S.V. & Van Remmen, H. CuZnSOD gene deletion targeted to skeletal muscle leads to loss of contractile force but does not cause muscle atrophy in adult mice. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 27, 3536-3548 (2013). Pubmed

  2. Kostrominova, T.Y., Reiner, D.S., Haas, R.H., Ingermanson, R. & McDonough, P.M. Automated methods for the analysis of skeletal muscle fiber size and metabolic type. International review of cell and molecular biology 306, 275-332 (2013). Pubmed

  3. Larkin, L.M., Davis, C.S., Sims-Robinson, C., Kostrominova, T.Y., Van Remmen, H., Richardson, A., Feldman, E.L. & Brooks, S.V. Skeletal muscle weakness due to deficiency of CuZn-superoxide dismutase is associated with loss of functional innervation. American journal of physiology. Regulatory, integrative and comparative physiology 301, R1400-1407 (2011). Pubmed

Neurobiology:

  1. Alyson S. Smith, Soneela Ankam, Chen Farhy, Lorenzo Fiengo, Ranor C.B. Basa, Kara L. Gordon, Charles T. Martin, Alexey V. Terskikh, Kelly L. Jordan-Sciutto, Jeffrey H. Price, Patrick M. McDonough. High-content analysis and Kinetic Image Cytometry identify toxicity and epigenetic effects of HIV antiretrovirals on human iPSC-neurons and primary neural precursor cells. Journal of Pharmacological and Toxicological Methods (2022).  Pubmed

  2. Zhu Q., Jiang J., Gendron T.F., McAlonis-Downes M., Jiang L., Taylor A., Garcia S.D., Dastidar S. G., Rodriguez M.J., King P., Zhang Y., La Spada A.R., Xu H., Petrucelli L., Ravits J., Da Cruz S., Lagier-Tourenne C., Cleveland D.W. Reduced C9ORF72 function exacerbates gain of toxicity from ALS/FTD-causing repeat expansion in C9orf72. Nature Neuroscience (2020). Pubmed

  3. McDonough P.M., Prigozhina N.L., Basa R.C.B., Price J.H. Assay of Calcium Transients and Synapses in Rat Hippocampal Neurons by Kinetic Image Cytometry and High-Content Analysis: An In Vitro Model System for Postchemotherapy Cognitive Impairment. Assay Drug Dev Technol 15(5):220-236 (2017). Pubmed

Virology:

  1. Rodriguez-Frandsen, A., Martin-Sancho, L., Gounder, A.P., Chang, M.W., Liu, W.C., De Jesus, P.D., von Recum-Knepper, J., Dutra, M.S., Huffmaster, N.J., Chavarria, M., Mena, I., Riva, L., Nguyen, C.B., Dobariya, S., Herbert, K.M., Benner, C., Albrecht, R.A., Garcia-Sastre, A. & Chanda, S.K. Viral determinants in H5N1 influenza A virus enable productive infection of HeLa cells. Journal of Virology (2020). Pubmed

  2. Shiryaev, S.A., Farhy, C., Pinto, A., Huang, C.T., Simonetti, N., Elong Ngono, A., Dewing, A., Shresta, S., Pinkerton, A.B., Cieplak, P., Strongin, A.Y. & Terskikh, A.V. Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antiviral Research (2017). Pubmed

Adipocytes, adipogenesis, and lipid droplets:

  1.  Hartig, S.M., He, B., Newberg, J.Y., Ochsner, S.A., Loose, D.S., Lanz, R.B., McKenna, N.J., Buehrer, B.M., McGuire, S.E., Marcelli, M. & Mancini, M.A. Feed-forward inhibition of androgen receptor activity by glucocorticoid action in human adipocytes. Chemistry & biology 19, 1126-1141 (2012). Pubmed

  2. Hartig, S.M., He, B., Long, W., Buehrer, B.M. & Mancini, M.A. Homeostatic levels of SRC-2 and SRC-3 promote early human adipogenesis. J Cell Biol 192, 55-67 (2011). Full Text

  3. McDonough, P.M., Ingermanson, R.S., Loy, P.A., Koon, E.D., Whittaker, R., Laris, C.A., Hilton, J.M., Nicoll, J.B., Buehrer, B.M. & Price, J.H. Quantification of Hormone Sensitive Lipase Phosphorylation and Colocalization with Lipid Droplets in Murine 3T3L1 and Human Subcutaneous Adipocytes via Automated Digital Microscopy and High-Content Analysis. Assay and drug development technologies (2010). Pubmed

  4. Whittaker, R., Loy, P.A., Sisman, E., Suyama, E., Aza-Blanc, P., Ingermanson, R.S., Price, J.H. & McDonough, P.M. Identification of MicroRNAs that control lipid droplet formation and growth in hepatocytes via high-content screening. Journal of biomolecular screening 15, 798-805 (2010). Pubmed

  5. Zou, J., Ganji, S., Pass, I., Ardecky, R., Peddibhotla, M., Loribelle, M., Heynen-Genel, S., Sauer, M., Pass, I., Vasile, S., Suyama, E., Malany, S., Mangravita-Novo, A., Vicchiarelli, M., McAnally, D., Cheltsov, A., Derek, S., Shi, S., Su, Y., Zeng, F.Y., Pinkerton, A.B., Smith, L.H., Kim, S., Ngyuen, H., Zeng, F.Y., Diwan, J., Heisel, A.J., Coleman, R., McDonough, P.M. & Chung, T.D.Y. Potent inhibitors of lipid droplet formation. Probe Reports from the NIH Molecular Libraries Program (Bethesda (MD), 2010). Pubmed

  6. McDonough, P.M., Agustin, R.M., Ingermanson, R.S., Loy, P.A., Buehrer, B.M., Nicoll, J.B., Prigozhina, N.L., Mikic, I. & Price, J.H. Quantification of Lipid Droplets and Associated Proteins in Cellular Models of Obesity via High-Content/High-Throughput Microscopy and Automated Image Analysis. Assay and drug development technologies (2009). Pubmed

High content screening methods:

  1. Chung, T.D. Collaborative pre-competitive preclinical drug discovery with academics and pharma/biotech partners at Sanford|Burnham: infrastructure, capabilities & operational models. Combinatorial chemistry & high throughput screening 17, 272-289 (2014). Pubmed

  2. Prigozhina, N.L., Heisel, A.J., Seldeen, J.R., Cosford, N.D. & Price, J.H. Amphiphilic suramin dissolves Matrigel, causing an ‘inhibition’ artefact within in vitro angiogenesis assays. International journal of experimental pathology 94, 412-417 (2013). Pubmed

  3. Coelho, L.P., Shariff, A. & Murphy, R.F. Nuclear Segmentation in Microscope Cell Images: A Hand-Segmented Dataset and Comparison of Algorithms. Proc IEEE Int Symp Biomed Imaging 5193098, 518-521 (2009). Pubmed

  4. Heynen-Genel, S. & Price, J. Cytometric Features of Fluorescently Labeled Nuclei for Cell Classification. Handbook of Medical Image Processing and Analysis, Vol. 1 (ed. Bankman, I.) 453-463 (Academic Press, 2009). Full Text

  5. Bushway, P.J., Mercola, M. & Price, J.H. A comparative analysis of standard microtiter plate reading versus imaging in cellular assays. Assay and drug development technologies 6, 557-567 (2008). Pubmed

  6. Garcia Osuna, E., Hua, J., Bateman, N.W., Zhao, T., Berget, P.B. & Murphy, R.F. Large-scale automated analysis of location patterns in randomly tagged 3T3 cells. Ann Biomed Eng 35, 1081-1087 (2007). Pubmed

  7. Prigozhina, N.L., Zhong, L., Hunter, E.A., Mikic, I., Callaway, S., Roop, D.R., Mancini, M.A., Zacharias, D.A., Price, J.H. & McDonough, P.M. Plasma membrane assays and three-compartment image cytometry for high content screening. Assay and drug development technologies 5, 29-48 (2007). Pubmed

  8. McKeithan, W.L., Colas, A.R., Bushway, P.J., Ray, S. & Mercola, M. Serum-Free Generation of Multipotent Mesoderm (Kdr+) Progenitor Cells in Mouse Embryonic Stem Cells for Functional Genomics Screening. Current Protocols in Stem Cell Biology (John Wiley & Sons, Inc., 2007). Pubmed

  9. Mikic, I., Planey, S., Zhang, J., Ceballos, C., Seron, T., von Massenbach, B., Watson, R., Callaway, S., McDonough, P.M., Price, J.H., Hunter, E. & Zacharias, D. A live cell, image-based approach to understanding the enzymology and pharmacology of 2-bromopalmitate and palmitoylation. Methods Enzymol 414, 150-187 (2006). Pubmed

  10. Shen, F. & Price, J.H. Toward complete laser ablation of melanoma contaminant cells in a co-culture outgrowth model via image cytometry. Cytometry. Part A : the journal of the International Society for Analytical Cytology 69, 573-581 (2006). Pubmed

  11. Berno, V., Hinojos, C.A., Amazit, L., Szafran, A.T. & Mancini, M.A. High-resolution, high-throughput microscopy analyses of nuclear receptor and coregulator function. Methods Enzymol 414, 188-210 (2006). Pubmed

  12. Morelock, M.M., Hunter, E.A., Moran, T.J., Heynen, S., Laris, C., Thieleking, M., Akong, M., Mikic, I., Callaway, S., DeLeon, R.P., Goodacre, A., Zacharias, D. & Price, J.H. Statistics of assay validation in high throughput cell imaging of nuclear factor kappaB nuclear translocation. Assay and drug development technologies 3, 483-499 (2005). Pubmed

  13. Price, J.H., Goodacre, A., Hahn, K., Hodgson, L., Hunter, E.A., Krajewski, S., Murphy, R.F., Rabinovich, A., Reed, J.C. & Heynen, S. Advances in molecular labeling, high throughput imaging and machine intelligence portend powerful functional cellular biochemistry tools. J Cell Biochem Suppl 39, 194-210 (2002). Pubmed
  14. Bajaj, S., Welsh, J.B., Leif, R.C. & Price, J.H. Ultra-rare-event detection performance of a custom scanning cytometer on a model preparation of fetal nRBCs. Cytometry 39, 285-294 (2000). Pubmed

Research using Vala’s anti-perilipin 1 antibodies (2009-present).


Anti-perilipin 1 antibody (Cat. 4854):

  1. Criglar J.M., Crawford S.E., Zhao B., Smith H.G., Stossi F., & Estes M.K. A genetically engineered rotavirus NSP2 phosphorylation mutant impaired in viroplasm formation and replication shows an early interaction between vNSP2 and cellular lipid droplets. Journal of Virology (2020). Full text

  2. Park M., Lee C., & Kim D. An easy method for the clear detection of beige fat UCP1 by Western blotting. Adipocyte (2019). Pubmed

  3. Liu Y., Fu W., Seese K., Yin A., & Yin H. Ectopic brown adipose tissue formation within skeletal muscle after brown adipose progenitor cell transplant augments energy expenditure. The FASEB Journal (2019). Pubmed

  4. Wang W., Sharma V.P., Shen H., Xiao Y., Zhu Q., Xiong X., Guo L., Jiang L., Ohta K., Li S., Shi H., Rui L., & Lin J.D. The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature Metabolism (2019). Pubmed

  5. Lu W., Weng W., Zhu Q., Zhai Y., Wan Y., Liu H., Yang S., Yu Y., Wei Y., & Shi J. Small bone marrow adipocytes predict poor prognosis in acute myeloid leukemia. Haematologica (2018). Pubmed

  6. Ding L., Zhang F., Zhao M., Ren X., Chen Q., Li Y., Kang Y., & Zhu G. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Scientific Reports (2016). Pubmed

  7. Krishnamoorthy L., Cotruvo J.A., Chan J., Kaluarachchi H., Muchenditsi A., Pendyala V.S., Jia S., Aron A.T., Ackerman C.M., Vander Wal M.N., Guan T., Smaga L.P., Farhi S.L., New E.J., Lutsenko S., & Chang C.J. Copper regulates cyclic-AMP-dependent lipolysis. Nature Chemical Biology (2016). Pubmed

  8. Larsson S., Jones H.A., Göransson O., Degerman E., & Holm C. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cellular Signalling (2016). Pubmed

  9. Cawthorn W.P., Scheller E.L., Parlee S.D., Pham H.A., Learman B.S., Redshaw C.M.H., Sulston R.J., Burr A.A., Das A.K., Simon B.R., Mori H., Bree A.J., Schell B., Krishnan V., & MacDougald O.A. Expansion of bone marrow adipose tissue during caloric restriction is associated with increased circulating glucocoritcoids and not with hypoleptinemia. Endocrinology (2016). Pubmed

  10. Cawthorn W.P., Scheller E.L., Learman B.S., Parless S.D., Simon B.R., Mori H., Ning X., Bree A.J., Schell B., Broome D.T., Soliman S.S., DelProposto J.L., Lumeng C.N., Mitra A. Pandit S.V., Gallagher K.A., Miller J.D., Krishnan V., Hui S.K., Bredella M.A., Fazeli P.K., Klibanski A., Horowitz M.C., Rosen C.J. & MacDougald O.A. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metabolism (2014). Pubmed

  11. Patel S., Yang W., Kozusko K., Saudek V., & Savage D.B. Perilipins 2 and 3 lack a carboxy-terminal domain present in perilipin 1 involved in sequestering ABHD5 and suppressing basal lipolysis. PNAS (2014). Full text

  12. Payne F., Lim K., Girousse A., Brown R.J., Kory N., Robbins A., Xue Y., Sleigh A., Cochran E., Adams C., Dev Borman A., Russel-Jones D., Gorden P., Semple R.K., Saudek V., O’Rahilly S., Walther T.C., Barroso I., & Savage D.B. Mutations disrupting the Kennedy phosphatidylcholine pathway in humans with congenital lipodystrophy and fatty liver disease. PNAS (2014). Pubmed

  13. Sembongi H., Miranda M., Han G., Fakas S., Grimsey N., Vendrell J., Carman G.M., & Siniossoglou S. Distinct roles of the phosphatidate phosphatases lipin 1 and 2 during adipogenesis and lipid droplet biogenesis in 3T3-L1 cells. Journal of Biological Chemistry (2013). Pubmed

  14. Yin H., Pasut A., Soleimani V.D., Bentzinger C.F., Antoun G., Thorn S., Seale P., Fernando P., van IJcken W., Grosveld F., Dekemp R.A., Boushel R., Harper M., & Rudnicki M.A. MicroRNA-133 controls brown adipose determination in skeletal muscle satellite cells by targeting Prdm16. Cell Metabolism (2014). Pubmed

  15. Zhou D., Samovski D., Okunade A.L., Stahl P.D., Abumrad N.A., & Su X. CD36 level and trafficking are determinants of lipolysis in adipocytes. The FASEB Journal (2012). Pubmed

  16. Nguyen K.D., Qiu Y., Cui Z., Goh Y.P.S., Mwangi J., David T., Mukundan L., Brombacher F., Locksley R.M., & Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature (2011). Full text

  17. McDonough P.M., Agustin R.M., Ingermanson R.S., Loy P.A., Buehrer B.M., Nicoll J.B., Prigozhina N.L., Mikic I., & Price J.H. Quantification of lipid droplets and associated proteins in cellular models of obesity via high content/high-throughput microscopy and automated image analysis. Assay and Drug Development Technologies (2009). Pubmed

Anti-phospho-perilipin 1-serine 497 antibody (Cat. 4855):

  1. Criglar J.M., Crawford S.E., Zhao B., Smith H.G., Stossi F., & Estes M.K. A genetically engineered rotavirus NSP2 phosphorylation mutant impaired in viroplasm formation and replication shows an early interaction between vNSP2 and cellular lipid droplets. Journal of Virology (2020). Full text

  2. Yang Y., Fu M., Li M., Zhang K., Zhang B., Wang S., Liu Y., Ni W., Ong Q., Mi J., & Yang X. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nature Communications (2020). Full text

  3. Wang W., Sharma V.P., Shen H., Xiao Y., Zhu Q., Xiong X., Guo L., Jiang L., Ohta K., Li S., Shi H., Rui L., & Lin J.D. The hepatokine Tsukushi gates energy expenditure via brown fat sympathetic innervation. Nature Metabolism (2019). Pubmed

  4. Rogne M., Chu D., Küntziger T.M., Mylonakou M., Collas P., & Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Molecular Biology of the Cell (2018). Pubmed

  5. Renvoisé B., Malone B., Falgairolle M., Munasinghe J., Stadler J., Sibilla C. Park S.H., & Blackstone C. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation. Human Molecular Genetics (2016). Pubmed

  6. Oue K., Zhang J., Harada-Hada K., Asano S., Yamawaki Y., Hayashiuchi M., Furusho H., Takata T., Irifune M., Hirata M., & Kanematsu T. Phospholipase C-related catalytically inactive protein is a new modulator of thermogenesis promoted by β-adrenergic receptors in brown adipocytes. Journal of Biological Chemistry (2016). Pubmed

  7. Ikoma-Seki K., Nakamura K., Morishita S., Ono T., Sugiyama K., Nishino H. Hirano H.., & Murakoshi M. Role of LRP1 and ERK and cAMP signaling pathways in lactoferrin-induced lipolysis in mature rat adipocytes. PLoS One (2015). Pubmed

  8. Wu L.E., Meoli C.C., Mangiafico S.P., Fazakerley D.J., Cogger V.C. Mohamad M., Pant H., Kang M., Powter E., Burchfield J.G., Xirouchaki C.E., Mikolaizak A.S., Stöckli J., Kolumam G., van Bruggen N., Gamble J.R., Le Couteur D.G., Cooney G.J., Andrikipoulos., & James D.E. Systemic VEGF-A neutralization ameliorates diet-induced metabolic dysfunction. Diabetes (2014). Pubmed

  9. Okumura T., Harada K., Oue K., Zhang J., Asano S., Hayashiuchi M., Mizokami A. Tanaka H., Irifune M., Kamata N., Hirata M., & Kanematsu T.  Phospholipase C-related catalytically inactive protein (PRIP) regulates lipolysis in adipose tissue by modulating the phosphorylation of hormone-sensitive lipase. PLoS One (2014). Full text

  10. Orlicky D.J., Monks J., Stefanski A.L., & McManaman J.L. Dynamics and molecular determinants of cytoplasmic lipid droplet clustering and dispersion. PLoS One (2013). Full text

  11. McDonough P.M., Maciejewski-Lenoir D., Hartig S.M., Hanna R.A., Whittaker R., Heisel A., Nicoll J.B., Buehrer B.M., Christensen K., Mancini M.G., Mancini M.A., & Edwards D.P. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One (2013). Full text

  12. Gupta N.A., Kolachala V.L., Jiang R., Abramowsky C., Romero R. Fifadara N., Anania F., Knechtle S., & Kirk A. The glucagon-like peptide-1 receptor agonist Exendin 4 has a protective role in ischemic injury of lean and steatotic liver by inhibiting cell death and stimulating lipolysis. The American Journal of Pathology (2012). Pubmed

  13. Gray N.E., Lam L.N., Yang K., Zhou A.Y., Koliwad S., & Wang J. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. Journal of Biological Chemistry (2012). Pubmed

Anti-phospho-perilipin 1-serine 522 antibody (Cat. 4856):

  1. Lizardo K., Ayyappan J.P., Oswal N., Weiss L.M., Scherer P.E. & Nagajyothi J.F. Fat tissue regulates the pathogenesis and severity of cardiomyopathy in murine chagas disease. PLoS Neglected Tropical Diseases (2021). Full Text

  2. Depommier C., Van Hul M., Everard A., Delzenne N.M., De Vos W.M., & Cani P.D. Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes (2020). Pubmed

  3. Overby H., Yang Y., Xu X., Graham K., Hildreth K., Choi S. Wan D., Morisseau C., Zeldin D.C., Hammock B.D., Wang S., Bettaieb A., & Zhao L. Soluble epoxide hydrolase inhibition by t-TUCB promotes brown adipogenesis and reduces serum triglycerides in diet-induced obesity. International Journal of Molecular Sciences (2020). Pubmed

  4. Krycer J.R., Quek L., Francis D., Zadoorian A., Weiss F.C., Cooke K.C., Nelson M.E., Diaz-Vegas A., Humphrey S.J., Scalzo R., Hirayama A., Ikeda S. Shoji F., Susuki K., Huynh K., Giles C., Varney B., Nagarajan S.R., Hoy A.J., Soga T., Meikle P.J., Cooney G.J., Fazakerley D.J., & James D.E. Insulin signaling requires glucose to promote lipid anabolism in adipocytes. Journal of Biological Chemistry (2020). Pubmed

  5. Tarabra E., Nouws J., Vash-Margita A., Nadzam G.S., Goldberg R., Van Name M., Pierpont B., Knight J.R., Shulman G.I., & Caprio S. The omentum of obese girls harbors small adipocytes and browning transcripts. JCI Insight (2020). Pubmed

  6. Ayyappan J.P., Lizardo K., Wang S., Yurkow E., & Nagajyothi J.F. Inhibition of SREBP improves cardiac lipidopathy, improves endoplasmic reticulum stress, and modulates chronic chagas cardiomyopathy. Journal of the American Heart Association (2020). Full text

  7. Nayak G., Zhang K.X., Vemaraju S., Odaka Y., Buhr E.D., Holt-Jones A., Kernodle S., Smith A.N., Upton B. A., D’Zouze A., Zhan J.J., Diaz N., Nguyen M., Mukherjee R., Gordon S.A., Wu G., Schmidt R., Mei X., Petts N.T., Batie M, Rao S., Hogenesch J.B., Nakamura T., Sweeney A., Seeley R.J., Van Gelder R.N., Sanchez-Gurmaches J., & Lang R.A. Adaptive thermogenesis in mice is enhanced by opsin 3-dependent adipocytes light sensing. Cell Reports (2020). Full text

  8. Yang Y., Fu M., Li M., Zhang K., Zhang B., Wang S., Liu Y., Ni W., Ong Q., Mi J., & Yang X. O-GlcNAc transferase inhibits visceral fat lipolysis and promotes diet-induced obesity. Nature Communications (2020). Full text

  9. El Ourrat D., Isaac R., Lee Y.S., Oh D.Y., Wollam J., Lackey D., Riopel M., Bandyopadhyay G., Seo J.B., Sampath-Kumar R., & Olefsky J.M. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metabolism (2020). Pubmed

  10. Lowry J.E., Tumurbaatar B., D’Agostino C., Main E., Wright T.J., Dillon E.L., Saito T.B., Porter C., Andersen, C.R., Brining D.L., Endsley J.J., Sheffield-Moore M., Volpi E., Fang R., Abate N., & Tuvdendorj D.R. Effect of high-fat diet on peripheral blood mononuclear cells and adipose tissue in early stages of diet-induced weight gain. British Journal of Nutrition (2019). Pubmed

  11. Jung S.M., Hung C., Hildebrand S.R., Sanchez-Gurmaches J., Martinez-Pastor B., Gengatharan J.M., Wallace M., Mukhopadhyay D., Calejman C.M., Luciano A.K., Hsiao W., Tang Y., Li H., Daniels D.L., Mostoslavsky R., Metallo C.M., & Guertin D.A. Non-canonical mTORC2 signaling regulates brown adipocyte lipid catabolism through SIRT6-FoxO1. Molecular Cell (2019). Pubmed

  12. Abulizi A., Camporez J.P., Jurczak M.J., Høyer K.F., Zhang D., Cline G.W., Samuel V.T., Shulman G.I., & Vatner D.F. Adipose glucocoricoid action influences whole-body metabolism via modulation of hepatic insulin action. FASEB Journal (2019). Pubmed

  13. Krois C.R., Vuckovic M.G., Huang P., Zaversnik C., Liu C.S., Gibson C.E., Wheeler M.R., Obrochta K.M., Min J.H., Herber C.B., Thompson A.C., Shah I.D., Gordon S.P., Hellerstein M.K., & Napoli J.L. RDH1 suppresses adiposity by promoting brown adipose adaptation to fasting and re-feeding. Cellular and Molecular Life Sciences (2019). Pubmed

  14. Liu K., Yu W., Wei W., Zhang X., Tian Y., Sherif M., Liu X., Dong C., Wu W., Zhang L., & Chen J. Melatonin reduces intramuscular fat deposition by promoting lipolysis and increasing mitochondrial function. Journal of Lipid Research (2019). Pubmed

  15. Boudreau A., Richard A.J., Burrell J.A., King W.T., Dunn R., Schwarz J., Ribnicky D.M., Rood J., Salbaum J.M., & Stephens J.M. An ethanolic extract of Artemisia scoparia inhibits lipolysis in vivo and had antilipolytic effects on murine adipocytes in vitro. American Journal of Physiology: Endocrinology and Metabolism (2018). Pubmed

  16. Hashani M. Witzel H.R., Pawella L.M. Lehmann-Koch J., Schumacher J., Mechtersheimer G., Schnölzer M., Schirmacher P., Roth W., & Straub B.K. Widespread expression of perilipin 5 in normal human tissues and in diseases is restricted to distinct lipid droplet subpopulations. Cell and Tissue Research (2018). Pubmed

  17. Rogne M., Chu D., Küntziger T.M., Mylonakou M., Collas P., & Tasken K. OPA1-anchored PKA phosphorylates perilipin 1 on S522 and S497 in adipocytes differentiated from human adipose stem cells. Molecular Biology of the Cell (2018). Pubmed

  18. Sanchez-Gurmaches J., Tang Y. Jespersen N.Z., Wallace M., Calejman C.M., Guija S. Li H., Edwards Y.J.K., Wolfrum C., Metallo C.M., Nielson S., Scheele C., & Guertin D.A. Brown fat AKT2 is a cold-induced kinase that stimulates ChREBP-mediated de novo lipogenesis to optimize fuel storage and thermogenesis. Cell Metabolism (2018). Pubmed

  19. Rondini E.A., Mladenovic-Lucas L., Roush W.R., Halvorsen G.T., Green A.E., & Granneman J.G. Novel pharmacological proves reveal ABHD5 as a locus of lipolysis control in white and brown adipocytes. Journal of Pharmacology and Experimental Therapeutics (2018). Pubmed

  20. Hansen J.S., de Maré S., Jones H.A., Göransson O., & Lindkvist-Petersson K. Visualization of lipid directed dynamics of perilipin 1 in human primary adipocytes. Scientific Reports (2018). Pubmed

  21. Guilherme A., Pedersen D.J., Henchey E., Henriques F.S., Danai L.V., Shen Y., Yenilmez B., Jung D., Kim J.K., Lodhi I.J., Semenkovich C.F., & Czech M.P. Adipocyte lipid synthesis coupled to neuronal control of thermogenic programming. Molecular Metabolism (2017). Pubmed

  22. Rui Y., Tong L., Cheng J., Wang G., Qin L., & Wan Z. Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes. Food and Nutrition Research (2017). Pubmed

  23. Kuo T., Chen T., Lee R.A., Nguyen N.H.T., Broughton A.E., Zhang D., & Wang J. Pik3r1 is required for glucocoritcoid-induced perilipin 1 phosphorylation in lipid droplet for adipocyte lipolysis. Diabetes (2017). Pubmed

  24. Tumurbaatar B., Poole A.T., Olson G., Makhlouf M., Sallam H.S., Thukuntla S., Kankanala S., Ekhaese O., Gomez G. Chandalia M., & Abate N. Adipose tissue insulin resistance in gestational diabetes. Metabolic Syndrome and Related Disorders (2017). Pubmed

  25. Keskin I., Sutcu M., Eren H., & Keskin M. Exposure to tumescent solution significantly increases phosphorylation of perilipin in adipocytes. Aesthetic Surgery Journal (2017). Pubmed

  26. Ding L., Zhang F., Zhao M., Ren X., Chen Q., Li Y., Kang Y., & Zhu G. Reduced lipolysis response to adipose afferent reflex involved in impaired activation of adrenoceptor-cAMP-PKA-hormone sensitive lipase pathway in obesity. Scientific Reports (2016). Pubmed

  27. Krishnamoorthy L., Cotruvo J.A., Chan J., Kaluarachchi H., Muchenditsi A., Pendyala V.S., Jia S., Aron A.T., Ackerman C.M., Vander Wal M.N., Guan T., Smaga L.P., Farhi S.L., New E.J., Lutsenko S., & Chang C.J. Copper regulates cyclic-AMP-dependent lipolysis. Nature Chemical Biology (2016). Pubmed

  28. Sagar G., Sah R.P., Javeed N., Dutta S.K., Smyrk T.C., Lau J.S., Giorgadze N., Tchkonia T., Kirkland J.L., Chari S.T., & Mukhopadhyay D. Pathogenesis of pancreatic cancer exosome-induced lipolysis in adipose tissue. Gut (2016). Pubmed

  29. Larsson S., Jones H.A., Göransson O., Degerman E., & Holm C. Parathyroid hormone induces adipocyte lipolysis via PKA-mediated phosphorylation of hormone-sensitive lipase. Cellular Signalling (2016). Pubmed

  30. Sanders M.A., Madoux F., Mladenovic L., Zhang H., Ye X., Angrish M., Mottillo E.P., Caruso J.A., Halvorsen G., Roush W.R., Chase P., Hodder P., & Granneman J.G. Endogenous and synthetic ABHD5 ligands regulate ABHD5-perilipin interactions and lipolysis in fat and muscle. Cell Metabolism (2015). Pubmed

  31. Martins G.P.C., Souza C.O., Marques S., Luciano T.F., Da Silva Pieri B.L., Rosa J.C., Da Silva A.S.R, Pauli J.R., Cintra D.E., Ropelle E.R., Rodrigues B., De Lira F.S., & De Souza C.T. Topiramate effects lipolysis in 3T3-L1 adipocytes. Biomedical Reports (2015). Pubmed

  32. DiPilato L.M., Ahmad F., Harms M. Seale P., Manganiello V., & Birnbaum M.J. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Molecular and Cellular Biology (2015). Pubmed

  33. Wiedemann M.S., Wueest S., Grob A., Item F., Schoenle E.G., & Konrad D. Short-term HFD doe not alter lipolytic function of adipocytes. Adipocyte (2014). Pubmed

  34. Mowers J., Uhm M., Reilly S.M., Simon J., Leto D., Chiang S., Chang L., & Salteil A.R. Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1. eLife (2013). Pubmed

  35. McDonough P.M., Maciejewski-Lenoir D., Hartig S.M., Hanna R.A., Whittaker R., Heisel A., Nicoll J.B., Buehrer B.M., Christensen K., Mancini M.G., Mancini M.A., & Edwards D.P. Differential phosphorylation of perilipin 1A at the initiation of lipolysis revealed by novel monoclonal antibodies and high content analysis. PLoS One (2013). Full text

  36. Rapold R.A., Wueest S., Knoepfel A., Schoenle E.J., & Konrad D. Fas activates lipolysis in a Ca2+-CaMKII-dependent manner in 3T3-L1 adipocytes. Journal of Lipid Research (2013). Pubmed

  37. Singh V., Jamwal S., Jain R., Verma P., Gokhale R., & Rao K.V.S. Mycobacterium tuberculosis-driven targeted recalibration of macrophage lipid homeostasis promotes the foamy phenotype. Cell Host & Microbe (2012). Pubmed

  38. Zhou D., Samovski D., Okunade A.L., Stahl P.D., Abumrad N.A., & Su X. CD36 level and trafficking are determinants of lipolysis in adipocytes. The FASEB Journal (2012). Pubmed

  39. Nguyen K.D., Qiu Y., Cui Z., Goh Y.P.S., Mwangi J., David T., Mukundan L., Brombacher F., Locksley R.M., & Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature (2011). Full text